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@ In the presence of large amounts of data, machine learning has shown
great success in many areas.
@ Do we always have this amount of data? No!
@ Despite that, we have a priori information in the form of physics laws that
can be incorporated into the problem.
Small Data

L.
Lots of Physu:sr Some Data

- No Physics

@ Physics-Informed Neural Networks address this problem by leveraging the
machinery of deep learning (automatic differentiation). 4/27
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@ Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential
equations. M. Raissi, P. Perdikaris, G.E. Karniadakis (2018).

@ We use Deep Learning in low-data but lots-of-physics scenarios to
approximate physical quantities by leveraging the universal approximation
of neural networks.
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@ Let us say we want to solve the PDE
—Au=1"f, inQ
u=g, on 092

@ The solution is approximated with a neural network up that takes x as
input and outputs the value up(x).

6=

(=)
slelelelelele

7/27



PINN
Physics-Informed Neural Networks and the Deep-Ritz Method

—Au=f, inQ
u=g, on 02

@ But wait, how do we train this?

@ We need training points! To evaluate the boundary condition we use
{xPAM < Q. To evaluate the PDE we use collocation points
Ny
{x}tic
@ We need a loss function!

@ PINNs: minimise the residual of the PDE.
m|n—Z|Aug(x )+ F(x))? +fZ|U0 ()2

Unsupervised Supervised
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@ What about the Deep-Ritz method?

“Au=fon2 o min /1|vu(x)|2 — F(x)u(x)dx
u=g, on 0f) ueHX(Q) Jq 2

@ Deep-Ritz: minimise the potential of the PDE.

mmfz Vo ()2 = F(x] uo(x]) ZIU@ x7) - g(x)?

Unsupervised Supervised
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@ def u(x):

u = neural net(x, weights,

biases)
return u

def f(x):

f =—np.pi**2 % tf.sin(np.pi*x)
return f

def residual(x):
u = u(x)
u x = tf.gradients(u,x)[0]
u xx = tf.gradients(u_x,x)[0]
f = f(x)
residual = u_xx + f
return residual
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CAN PHYSICS-INFORMED NEURAL NETWORKS BEAT THE
FINITE ELEMENT METHOD?

Tamara G. Grossmann®, Urszula Julia Komorowska', Jonas Latz' and Carola-Bibiane Schinlieh*

ABSTRACT

Partial differential equations play a fundamental role in the mathematical modelling of
many processes and systems in physical, biological and other sciences. To simulate such
processes and systems, the solutions of PDEs often need to be approximated numerically.
The finite element method, for instance, is a usual standard methodology to do so. The
recent success of deep neural networks at various approximation tasks has motivated their
use in the numerical solution of PDEs. These so-called physics-informed neural networks
and their variants have shown to be able to successfully approximate a large range of par-
tial differential equations. So far, physics-informed neural networks and the finite element
method have mainly been studied in isolation of each other. In this work, we compare the
methodologies in a systematic computational study. Indeed, we employ both methods to
numerically solve various linear and nonlinear partial differential equations: Poisson in 1D,
2D, and 3D, Allen-Cahn in 1D, semilinear Schrédinger in ID and 2D. We then compare
computational costs and approximation accuracies. In terms of solution time and accu-
racy, physics-informed neural networks have not been able to outperform the finite element
method in our study. In some experiments, they were faster at evaluating the solved PDE.
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Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locatefjcp

Physics-informed neural networks: A deep learning )
framework for solving forward and inverse problems involving %
nonlinear partial differential equations

M. Raissi?, P. Perdikaris ™*, G.E. Karniadakis

2 Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA
® Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA

5. Conclusions

We have introduced physics-informed neural networks, a new class of universal function approximators that is capable of
encoding any underlying physical laws that govern a given data-set, and can be described by partial differential equations.
In this work, we design data-driven algorithms for inferring solutions to general nonlinear partial differential equations,
and constructing computationally efficient physics-informed surrogate models. The resulting methods showcase a series of
promising results for a diverse collection of problems in compurtational science, and open the path for endowing deep
learning with the powerful capacity of mathemartical physics to model the world around us. As deep learning technology is
continuing to grow rapidly both in terms of methodological and algorithmic developments, we believe that this is a timely
contribution that can benefit practitioners across a wide range of scientific domains. Specific applications that can readily
enjoy these benefits include, but are not limited to, data-driven forecasting of physical processes, model predictive control,
multi-physics/multi-scale modeling and simulation.

We must note however that the proposed methods should not be viewed as replacements of classical numerical methods
for solving partial differential equations (e.g., finite elements, spectral methods, etc.). Such methods have matured over
the last 50 years and, in many cases, meet the robustness and computational efficiency standards required in practice.
Our message here, as advocated in Section 3.2, is that classical methods such as the Runge—Kurta time-stepping schemes
can coexist in harmony with deep neural networks, and offer invaluable intuition in constructing structured predictive
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Main features:

Useful in low-data regime.

The input of the network is a point in the domain. It has a low
dimensional input in comparison to typical neural networks.

@ Physical constraint is imposed through PDEs or conservation laws.

@ Architecture: Fully Connected. Activation function: hyperbolic tangent

@ Automatic differentiation to take derivatives of output with respect to

the input.

Mesh free method! (No curse of dimensionality!)
Easy to handle with non-linearities.

Once trained, the solution is easy to interpolate!

Related concepts in the literature: Neural fields, Implicit Neural
Representations.
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millions in 2016 according to the WHO).

@ There are metrics used to assess cardiac activity such as Ejection Fraction.

@ Cardiac Strain is an alternative metric that describes the deformation of
the heart during the cardiac cycle. Simply put, it is the derivative of the
deformation field.

@ There are magnetic resonance methods used to measure cardiac
deformation: tagged, phase velocity, displacement-encoded (DENSE) or
strain encoded (SENC). Not suitable for clinical routines!

@ Cine SSFP MRI is the gold standard for cardiac image acquisition but it
doesn’t contain information about the deformation.

@ Goal: To determine the deformation field/cardiac strain of the heart
during the cardiac cycle from cine SSFP MRI data.

@ Idea: To approximate the deformation field by using a Physics-Informed
Neural Network. It is trained by solving an image registration task on
cine SSFP MR images.
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Image Registration

The image registration task

Given a reference image R : R” — R and a template image T : R” — R, we
want to find a deformation field ¢ : R" — R" such that the warped template
image T, := T o ¢ is close enough R w.r.t. some distance D:

¢" = argmin_D(R, T,)

enddiastole
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Image Registration

An example in 2D

@ Let's take the deformation field (X, Y) = ( X )

@ Let's meet Bruno!

Reference Image Template Image

o Example: (iﬁ) _ (0?9) Then ¢(1,0.9) = G)

@ Finally R(1,0.9) = T(¢(1,0.9)) = T(1,1).
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(Pl(x7 y’ z’ t)
@ Try to approximate the deformation field (x,y, z, t) = | v2(x, y, z, t)

©3(x,y,z,t)
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(Pl(xy Y,z t)
@ Try to approximate the deformation field (x,y, z, t) = | v2(x, y, z, t)
@3()(7 Y,z t)
@ We propose WarpPINN: takes a point (x,y, z) in the reference frame and
the time t and outputs the new position of this point at that time.
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@ We seek to minimise

min 7 () = [[R(X) = T o o(X)|[p(q) + aR()-

@ Physical constraint? The cardiac tissue is nearly incompressible!
@ J:=|J,(X)| ~ 1, for X in the cardiac tissue.
@ WarpPINN minimises

mlnE

2 \

N
Z (Xi) = T o pe(X:))P + aFExea Whneorook (@6 ) (X),
where

Wieottook (96) = tr(C)—3—2log(J)+A(J—1)%; F = %, J=|F|,C=FF
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Let's see some results!
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A nice plot to finish
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@ PINNSs seem to be a promising new tool for the resolution of PDEs and
inverse problems involving regularisers in the form of differential operators.
We showed how to use WarpPINN to solve an image registration problem.
WarpPINN can be employed in other image registration tasks, but how to

ensure the deformation field to be a diffeomorphism?

@ Vanilla PINNs has shown to be a versatile tool, however it has failed in
some applications.

“/ M\“ Paris Pedikaris

\I ¥/ @ParisPerdikaris

Replying to @MilesCranme

Indeed PINNs present unique challenges compared to classical
supervised learning with neural nets. To name a few: (i) no good way to
initialize them, (ii) no specialized architectures with good inductive
biases for a given PDE, (iii) stiffness due to multiple training objectives.

4:48 PM - Mar 28,2023 - 227 Views

@ There are too many ingredients! Initialisation of parameters, number of
hidden layers, number of neurons, optimiser, sampling of collocation
points, etc.

@ Good news for mathematicians!
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Thanks!
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