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Introduction and Motivation

In the presence of large amounts of data, machine learning has shown
great success in many areas.

Do we always have this amount of data? No!
Despite that, we have a priori information in the form of physics laws that
can be incorporated into the problem.

Physics-Informed Neural Networks address this problem by leveraging the
machinery of deep learning (automatic differentiation).
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Physics-Informed Neural Networks and the Deep-Ritz Method

Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential
equations. M. Raissi, P. Perdikaris, G.E. Karniadakis (2018).

We use Deep Learning in low-data but lots-of-physics scenarios to
approximate physical quantities by leveraging the universal approximation
of neural networks.
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Physics-Informed Neural Networks and the Deep-Ritz Method

Let us say we want to solve the PDE{
−∆u = f , in Ω

u = g , on ∂Ω

The solution is approximated with a neural network uθ that takes x as
input and outputs the value uθ(x).
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Physics-Informed Neural Networks and the Deep-Ritz Method

{
−∆u = f , in Ω

u = g , on ∂Ω

But wait, how do we train this?

We need training points! To evaluate the boundary condition we use
{xb

i }
Nb
i=1 ⊂ ∂Ω. To evaluate the PDE we use collocation points

{x r
j }Nr

j=1 ⊂ Ω.

We need a loss function!

PINNs: minimise the residual of the PDE.

min
θ

1
Nr

∑
j

|∆uθ(x r
j ) + f (x r

j )|2︸ ︷︷ ︸
Unsupervised

+
1
Nb

∑
i

|uθ(xb
i )− g(xb

i )|2︸ ︷︷ ︸
Supervised
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Physics-Informed Neural Networks and the Deep-Ritz Method

What about the Deep-Ritz method?{
−∆u = f , in Ω

u = g , on ∂Ω
⇐⇒ min

u∈H1
g (Ω)

∫
Ω

1
2
|∇u(x)|2 − f (x)u(x)dx

Deep-Ritz: minimise the potential of the PDE.

min
θ

1
Nr

∑
j

1
2
|∇uθ(x r

j )|2 − f (x r
j )uθ(x r

j )︸ ︷︷ ︸
Unsupervised

+
1
Nb

∑
i

|uθ(xb
i )− g(xb

i )|2︸ ︷︷ ︸
Supervised
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Physics-Informed Neural Networks and the Deep-Ritz Method

de f u ( x ) :
u = neura l_net ( x , we ights , b i a s e s )
r e t u r n u

de f f ( x ) :
f = −np . p i ∗∗2 ∗ t f . s i n ( np . p i ∗x )
r e t u r n f

de f r e s i d u a l ( x ) :
u = u ( x )
u_x = t f . g r a d i e n t s (u , x ) [ 0 ]
u_xx = t f . g r a d i e n t s (u_x , x ) [ 0 ]
f = f ( x )
r e s i d u a l = u_xx + f
r e t u r n r e s i d u a l
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Physics-Informed Neural Networks and the Deep-Ritz Method

Main features:
Useful in low-data regime.

The input of the network is a point in the domain. It has a low
dimensional input in comparison to typical neural networks.

Physical constraint is imposed through PDEs or conservation laws.

Architecture: Fully Connected. Activation function: hyperbolic tangent

Automatic differentiation to take derivatives of output with respect to
the input.

Mesh free method! (No curse of dimensionality!)

Easy to handle with non-linearities.

Once trained, the solution is easy to interpolate!

Related concepts in the literature: Neural fields, Implicit Neural
Representations.
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Motivation

Cardiac diseases are one the main causes of death in the world (17.9
millions in 2016 according to the WHO).

There are metrics used to assess cardiac activity such as Ejection Fraction.

Cardiac Strain is an alternative metric that describes the deformation of
the heart during the cardiac cycle. Simply put, it is the derivative of the
deformation field.

There are magnetic resonance methods used to measure cardiac
deformation: tagged, phase velocity, displacement-encoded (DENSE) or
strain encoded (SENC). Not suitable for clinical routines!

Cine SSFP MRI is the gold standard for cardiac image acquisition but it
doesn’t contain information about the deformation.

Goal: To determine the deformation field/cardiac strain of the heart
during the cardiac cycle from cine SSFP MRI data.

Idea: To approximate the deformation field by using a Physics-Informed
Neural Network. It is trained by solving an image registration task on
cine SSFP MR images.
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Image Registration

The image registration task
Given a reference image R : Rn → R and a template image T : Rn → R, we
want to find a deformation field ϕ : Rn → Rn such that the warped template
image Tϕ := T ◦ ϕ is close enough R w.r.t. some distance D:

ϕ∗ = argminϕD(R,Tϕ)

.
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Image Registration

An example in 2D

Let’s take the deformation field ϕ(X ,Y ) =

(
X

Y + 0.1 · X

)

Let’s meet Bruno!

Example:
(
X
Y

)
=

(
1
0.9

)
. Then ϕ(1, 0.9) =

(
1
1

)
.

Finally R(1, 0.9) = T (ϕ(1, 0.9)) = T (1, 1).
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WarpPINN

We deal now with a multi-temporal image registration problem

Try to approximate the deformation field (x , y , z , t)→

ϕ1(x , y , z , t)
ϕ2(x , y , z , t)
ϕ3(x , y , z , t)

.

We propose WarpPINN: takes a point (x , y , z) in the reference frame and
the time t and outputs the new position of this point at that time.
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WarpPINN

We seek to minimise

min
ϕ
J (ϕ) = ‖R(X )− T ◦ ϕ(X )‖pLp(Ω) + αR(ϕ).

Physical constraint? The cardiac tissue is nearly incompressible!

J := |Jϕ(X )| ∼ 1, for X in the cardiac tissue.

WarpPINN minimises

min
θ
L(θ) =

1
N

N∑
i=1

(R(X i )− T ◦ ϕθ(X i ))p + αEX∈ΩWNeoHook(ϕθ)(X ),

where

WNeoHook(ϕθ) = tr(C)−3−2 log(J)+λ(J−1)2;F =
∂ϕθ
∂X

, J = |F |,C = F tF
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WarpPINN

Let’s see some results!
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WarpPINN

A nice plot to finish
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Conclusions and future work

PINNs seem to be a promising new tool for the resolution of PDEs and
inverse problems involving regularisers in the form of differential operators.

We showed how to use WarpPINN to solve an image registration problem.

WarpPINN can be employed in other image registration tasks, but how to
ensure the deformation field to be a diffeomorphism?

Vanilla PINNs has shown to be a versatile tool, however it has failed in
some applications.

There are too many ingredients! Initialisation of parameters, number of
hidden layers, number of neurons, optimiser, sampling of collocation
points, etc.

Good news for mathematicians!
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Conclusions and future work

Thanks!
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